Atacama Large Millimeter / Meter Matrixの使用([{” attribute=””>ALMA) in Chile, researchers at Leiden Observatory in the Netherlands have for the first time detected dimethyl ether in a planet-forming disc. With nine atoms, this is the largest molecule identified in such a disc to date. It is also a precursor of larger organic molecules that can lead to the emergence of life.
“From these results, we can learn more about the origin of life on our planet and therefore get a better idea of the potential for life in other planetary systems. It is very exciting to see how these findings fit into the bigger picture,” says Nashanty Brunken, a Master’s student at Leiden Observatory, part of Leiden University, and lead author of the study published on March 8, 2022, in Astronomy & Astrophysics.
生命の構成要素はどのように惑星で終わりますか? 惑星形成ディスクでこれまでに発見された最大の分子の発見は、これへの手がかりを提供します。 クレジット:[{” attribute=””>ESO
Dimethyl ether is an organic molecule commonly seen in star-forming clouds, but had never before been found in a planet-forming disc. The researchers also made a tentative detection of methyl formate, a complex molecule similar to dimethyl ether that is also a building block for even larger organic molecules.
“It is really exciting to finally detect these larger molecules in discs. For a while we thought it might not be possible to observe them,” says co-author Alice Booth, also a researcher at Leiden Observatory.
The molecules were found in the planet-forming disc around the young star IRS 48 (also known as Oph-IRS 48) with the help of ALMA, an observatory co-owned by the European Southern Observatory (ESO). IRS 48, located 444 light-years away in the constellation Ophiuchus, has been the subject of numerous studies because its disc contains an asymmetric, cashew-nut-shaped “dust trap.” This region, which likely formed as a result of a newly born planet or small companion star located between the star and the dust trap, retains large numbers of millimeter-sized dust grains that can come together and grow into kilometer-sized objects like comets, asteroids and potentially even planets.
Many complex organic molecules, such as dimethyl ether, are thought to arise in star-forming clouds, even before the stars themselves are born. In these cold environments, atoms and simple molecules like carbon monoxide stick to dust grains, forming an ice layer and undergoing chemical reactions, which result in more complex molecules. Researchers recently discovered that the dust trap in the IRS 48 disc is also an ice reservoir, harboring dust grains covered with this ice rich in complex molecules. It was in this region of the disc that ALMA has now spotted signs of the dimethyl ether molecule: as heating from IRS 48 sublimates the ice into gas, the trapped molecules inherited from the cold clouds are freed and become detectable.
このビデオは、ダストトラップを含む惑星で構成されたディスクに囲まれた星であるOph-IRS48システムでズームインされています。 このトラップは、ほこりの粒子が成長し、より大きな物体を増殖させることを可能にします。
「これをさらにエキサイティングなものにしているのは、これらのより大きな複雑な分子が、ディスクに形成されている惑星に栄養を与えるために利用できることがわかったことです」とブースは説明します。 「これらの分子はほとんどのシステムで氷の中に隠されているため、これは以前は知られていませんでした。」
ジメチルエーテルの発見は、星形成領域で一般的に見られる他の多くの複雑な分子も、惑星形成ディスクの氷の構造に潜んでいる可能性があることを示唆しています。 これらの分子は、次のようなプレバイオティクス分子の前駆体です。[{” attribute=””>amino acids and sugars, which are some of the basic building blocks of life.
By studying their formation and evolution, researchers can therefore gain a better understanding of how prebiotic molecules end up on planets, including our own. “We are incredibly pleased that we can now start to follow the entire journey of these complex molecules from the clouds that form stars, to planet-forming discs, and to comets. Hopefully, with more observations we can get a step closer to understanding the origin of prebiotic molecules in our own Solar System,” says Nienke van der Marel, a Leiden Observatory researcher who also participated in the study.
このビデオは、ダストトラップを含む惑星で構成されたディスクに囲まれた星であるOph-IRS48システムでズームインされています。 このトラップは、ほこりの粒子が成長し、より大きな物体を増殖させることを可能にします。
現在チリで建設中であり、この10年後半に運用を開始する予定の、ESOの超大型望遠鏡(ELT)を使用したIRS 48の将来の研究により、チームは地球のような惑星が形成される可能性のあるディスクの内部領域の化学を研究できるようになります。 。
参照:「惑星形成ディスクの主要な非対称氷トラップ:III。ジメチルエーテルの最初の検出」Nasante JC Bronkin、Alice S. Booth、Margot Lemker、Bona Nazari、Ninke van der Marel、およびEwen F. Van Dyschoek 、2022年3月8日、 天文学と天体物理学。
DOI:10.1051 / 0004-6361 / 202142981
この出版物は2022年の国際女性デーに発表され、6人の女性研究者による研究が含まれています。
チームは、Nashanty GC Brunken(ライデン天文台、ライデン大学、オランダ)で構成されています。 [Leiden])、アリスS。 ブース(ライデン)、Margot Lemker(ライデン)、Boneh Nazari(ライデン)、Ninke van der Marel(ライデン)、Ewen F van Dyschoek(ライデン天文台、マックスプランク外国ミッション研究所、ガルヒング、ドイツ)
「アマチュア主催者。ビールの伝道者になりたい。一般的なウェブファン。認定インターネット忍者。熱心な読者。」
More Stories
スペースXのファルコン9ロケットが打ち上げ前に停止、億万長者が特別任務に就く
ブラックホールはどのようにしてこれほど大きく、そして速く成長したのでしょうか?答えは暗闇の中にあります
世界最速の顕微鏡が電子の動きをアト秒で捉える:ScienceAlert