4月 27, 2024

kenmin-souko.jp

日本からの最新ニュースと特集:ビジネス、政治、解説文化、ライフ&スタイル、エンターテインメント、スポーツ。

アインシュタインの相対性理論は量子の挑戦後も依然として強力です

アインシュタインの相対性理論は量子の挑戦後も依然として強力です

研究者らは、関係する質量の特定の組成に関係なく、重量、慣性、重力などの質量のさまざまな特性は常に同等であるという物理学の基本的な仮定を前例のない精度で確認しました。 これは、アインシュタインの相対性理論に不可欠な等価原理を強化し、古典物理学と量子物理学の重要な相違点に対処します。

ハノーバー・ライプニッツ大学とブレーメン大学の研究チームは、別の等価原則を確認しました。

科学者たちは、半世紀にわたる月のレーザー測距データを使用して、すべての質量特性が等しいことを 100 倍高い精度で確認しました。 この発見は、相対性理論の基礎であるアインシュタインの等価原理を大きく裏付けています。

基礎物理学の最も基本的な仮定の 1 つは、質量のさまざまな特性 (重量、慣性、重力) は互いに常に同じままであるということです。 この等価性がなければ、アインシュタインの相対性理論は矛盾し、既存の物理学の教科書は書き直されなければならなくなるでしょう。 これまでのすべての測定は等価原理を確認していますが、量子理論では違反があるに違いないと仮定しています。 アインシュタインの重力理論と現代の量子理論との間のこの矛盾が、等価原理のより厳密なテストが特に重要である理由です。

ブレーメン大学の応用宇宙技術・微小重力センター(ZARM)のチームは、ハノーバー・ライプニッツ大学測地学研究所(IfE)と協力して、その大きさが100倍であることを実証することに成功した。[{” attribute=””>accuracy that passive gravitational mass and active gravitational mass are always equivalent – regardless of the particular composition of the respective masses. The research was conducted within the framework of the Cluster of Excellence “QuantumFrontiers.” On July 13, the team published their findings as a highlights article in the scientific journal Physical Review Letters.

Binary System Earth Moon

Binary system Earth-Moon. Credit: AEOS Medialab, ESA 2002

Physical context

Inertial mass resists acceleration. For example, it causes you to be pushed backward into your seat when the car starts. Passive gravitational mass reacts on gravity and results in our weight on Earth. Active gravitational mass refers to the force of gravitation exerted by an object, or more precisely, the size of its gravitational field. The equivalence of these properties is fundamental to general relativity. Therefore, both the equivalence of inertial and passive gravitational mass and the equivalence of passive and active gravitational mass are being tested with increasing precision.

Vishwa Vijay Singh

First Author of the Publication, Vishwa Vijay Singh. Credit: Singh

What was the study about?

If we assume that passive and active gravitational mass are not equal – that their ratio depends on the material – then objects made of different materials with a different center of mass would accelerate themselves. Since the Moon consists of an aluminum shell and an iron core, with centers of mass offset against each other, the Moon should accelerate. This hypothetical change in speed could be measured with high precision, via “Lunar Laser Ranging.” This involves pointing lasers from Earth at reflectors on the Moon placed there by the Apollo missions and the Soviet Luna program. Since then, round trip travel times of laser beams are recorded. The research team analyzed “Lunar Laser Ranging” data collected over a period of 50 years, from 1970 to 2022, and investigated such mass difference effects. Since no effect was found, this means that the passive and active gravitational masses are equal to approximately 14 decimal places. This estimate is a hundred times more accurate than the best previous study, dating back to 1986.

Unique expertise

LUH’s Institute of Geodesy – one of only four centers worldwide analyzing laser distance measurements to the Moon – has unique expertise in assessing the data, particularly for testing general relativity. In the current study, the institute analyzed the Lunar Laser Ranging measurements, including error analysis and interpretation of the results.

Vishwa Vijay Singh, Jürgen Müller and Liliane Biskupek from the Institute of Geodesy at Leibniz University Hannover, as well as Eva Hackmann and Claus Lämmerzahl from the Center of Applied Space Technology and Microgravity (ZARM) at the University of Bremen published their findings in the journal Physical Review Letters, where the paper was highlighted in the category “editors’ suggestion.”

Reference: “Equivalence of Active and Passive Gravitational Mass Tested with Lunar Laser Ranging” by Vishwa Vijay Singh, Jürgen Müller, Liliane Biskupek, Eva Hackmann and Claus Lämmerzahl, 13 July 2023, Physical Review Letters.
DOI: 10.1103/PhysRevLett.131.021401

READ  科学者が鳥の羽に隠された古代のパターンを発見:ScienceAlert